加勒比中文字幕亚洲伦理 国产原创日韩无码 中文字幕无码乱在线 操bb国片四区三区

Wuxi Gotele Metal Products Co., Ltd : CN EN
首頁 >>新聞動態(tài) >>電氣系統(tǒng)新聞

High – Temperature Superconductivity

High – Temperature Superconductivity

Recently, researchers at Argonne National Laboratory have discovered a nickel oxide compound as a material for high-temperature superconductivity. John Mitchell led a team that synthesized crystals of a metallic trilayer nickelate compound through a high pressure crystal growth process.  This process combined crystal growth, x-ray spectroscopy, and computational theory to produce the nickel oxide compound. “It’s poised for super conductivity in a way not found in other nickel oxides,” Mitchell stated.

Superconducting materials are extremely important technologically because electricity is able to flow through without experiencing any resistance. At first, low-temperature super conductivity seemed possible, but was impractical because items must be coolers to hundreds of degrees below zero. But in 1986, high-temperature conductivity was discovered in copper oxide compounds, cuprates, brought upon a new technological phenomenon.  A high-temperature superconductor could potentially lead to faster and more efficient electronic devices that can transmit powers without any sort of energy loss, as well as levitating trains that will be able to travel on frictionless magnets rather than rails.



For years, it hasn’t be exactly clear how cuprate superconductivity works, so researches have been looking for alternative solutions. Nickel-based oxides, nickelates, for a while have been a potential cuprate substitute because of the similar properties.  The journey has had their ups and downs and very little success have been achieved, but they are slowly but surely making progress.

The team was able to create a quasi-two-dimensional trilayer compound. This trilayer consists of three separate layers of nickel oxide that are separated by spacer layers of praseodymium oxide. Mitchell described the nickel looking more two-dimensional rather than three-dimensional, both structurally and electronically. The nickelate as well as a compound that contains lanthanum rather than praseodymium both share a quasi-two-dimensional trilayer structure. The lanthanum component is non-metallic but adopts a “charge stripe” phase, which is an electronic property that can help act as an insulator. This insulator like material is the opposite of a superconductor.  The praseodymium system is not capable of forming the similar stripes, but remains metallic and is the more likely candidate for superconductivity.

The Argonne Laboratory is one of the very few places in the world that is capable of creating the compound. There are special capabilities that the high-pressure optical-image floating zone furnace is able to do to allow the crystals to grow properly. By taking X-ray absorption spectroscopy and performing density functional theory calculations, the electronic structure of the compound is similar to cuprate materials.

This is just first few steps of discovering, and the team will be attempting way to help induce the conductivity. 

首頁電話產(chǎn)品導航
CN EN
湟中县| 通化县| 竹山县| 青神县| 甘泉县| 苗栗县| 芦山县| 洛阳市| 舞钢市| 大安市| 博野县| 石林| 腾冲县| 昌邑市| 西青区| 酒泉市| 临沂市| 洪洞县| 清远市| 家居| 新野县| 丹东市| 武冈市| 怀柔区| 南召县| 广宗县| 沂水县| 仁寿县| 吉木萨尔县| 汉阴县| 永年县| 太仓市| 瑞昌市| 齐河县| 翁源县| 临高县| 拉萨市| 澳门| 盐池县| 无锡市| 安徽省|